排列组合公式怎样计算的?(排列组合公式及排列组合算法)
排列组合A(n,m)和的 C(n,m)的计算公式分别如下图所示:排列计算公式 :从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出...
下面,我将用我自己的方式来解释排列组合计算公式的问题,希望我的回答能够对大家有所帮助。让我们开始讨论一下排列组合计算公式的话题。
排列组合公式怎样计算的?
排列组合A(n,m)和的 C(n,m)的计算公式分别如下图所示:
排列计算公式 :从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m)表示。 p(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1)
计算举例如下图所示:
扩展资料:
1、组合数,是指从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
2、排列数,就是从n个不同元素中,任取m(m≤n)个元素(被取出的元素各不相同),按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
参考资料:
排列组合的公式有哪些?
排列的公式:A(n,m)=n×(n-1)……(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。组合的公式:C(n,m)=P(n,m)/P(m,m) =n!/m!×(n-m)!。
排列组合,排列在组合之前,咱们要聊的第一个概念是“排列”,排列的英文是 Permutation 或者 Arrangement,因此在数学符号中,用 P 或者 A 表示都可以,二者意思完全一样。我们常见的 P 右边会跟两个数字(或字母),右下角的数字 n 表示总数,右上角的数字 m 表示抽出的个数。
排列组合
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。 排列组合与古典概率论关系密切。
排列的定义:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个不同的元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数。
以上内容参考:百度百科——排列组合
排列组合计算公式是什么?
排列组合计算公式
A公式,表示从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫作从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
A(n,n)=n! A(n,m)=n!÷(m-n)!?? 0!=1
C公式,表示从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C(n,m) 表示。
C(n,n)=1 ? C(n,m)=A(n,m)÷m!
参考资料:
排列组合公式及排列组合算法
排列组合公式
排列组合公式/排列组合计算公式
公式P是指排列,从N个元素取M个进行排列。
公式C是指组合,从N个元素取M个进行组合,不进行排列。
N-元素的总个数
M参与选择的元素个数
!-阶乘,如9!=9*8*7*6*5*4*3*2*1
从N到数M个,表达式应该为n*(n-1)*(n-2)..(n-m+1);
因为从n到(n-m+1)个数为n-(n-m+1)=m
举例:
Q1: 有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1
有谁知道排列组合的计算公式?
排列组合的计算公式:
排列A(n,m)=n×(n-1)。(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)。
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
除法运算
1、除以一个不等于零的数,等于乘这个数的倒数。
2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。
注意:
零不能做除数和分母。
有理数的除法与乘法是互逆运算。
排列组合公式a和c计算方法
排列组合是组合学最基本的概念。所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
1 数学排列组合公式
1 排列a与组合c计算方法
计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
排列组合问题计算公式
排列组合计算方法如下:排列也可以表示成P
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6
概率中的C和P区别:
1、表示不同
C表示组合方法,比如有3个人甲乙丙,抽出2个人去参加活动的方法有C(3,2)=3种,分别是甲乙、甲丙、乙丙,这个不具有顺序性,只有组合的方法。
P表示排列方法,表示一些物体按顺序排列起来,总共的方法是多少。
2、性质不同
公式P是指排列,从N个元素取R个进行排列(即排序)。
公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
扩展资料
排列组合的难点:
1、从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;
2、限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
3、计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
4、计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
今天关于“排列组合计算公式”的讲解就到这里了。希望大家能够更深入地了解这个主题,并从我的回答中找到需要的信息。如果您有任何问题或需要进一步的信息,请随时告诉我。