时间序列模型(一阶平稳的序列有哪些)
众所周知,时间序列的预测是需要假定在时间序列平稳随机过程的基础上,若为非平稳时间序列,容易造成对随机过程的伪回归,得到的回归函数及检验没有可信度, 那么到底什么...
什么是平稳序列?是一个非常重要的话题,可以从不同的角度进行思考和讨论。我愿意与您分享我的见解和经验。

时间序列模型
众所周知,时间序列的预测是需要假定在时间序列平稳随机过程的基础上,若为非平稳时间序列,容易造成对随机过程的伪回归,得到的回归函数及检验没有可信度, 那么到底什么是平稳时间序列 ? 什么是随机过程(白噪声)?
时间序列平稳性分为弱平稳和强平稳,弱平稳是序列的均值、标准差、协方差不随时间的变化而发生改变,强平稳则是序列的联合分布函数与时间的位移无关。
我们预测时间序列一般都用序列本身存在的前后依附关系,这种关系是时间序列预测的基础,我们这里假设本期数值只与前一期相关(与前t期相关的类似),则 平稳性的推导 过程如下
所以当r小于1的时候,序列才为平稳序列,也称为随机游走过程,但这个至少均值还为零,是带漂移时间序列的特殊形式,那什么是带漂移序列,带漂移序列就是均值也随着时间t发生改变,即
但是也由上图第二个公式可知,一阶差分之后的(上面三角形加Yt)的均值和方差保持不变(因为Ut服从正态分布)
既然我们知道了什么是非平稳时间序列,那我们应该怎么检验呢?
答案是单位根检验
单位根检验由来
ADF检验是单位根检验的一种,也是比较常用的一种检验方法,是DF检验的优化,消除了序列的自相关性,内部使用为t统计量检验过程,若t大于临界值,则不能拒绝原假设r=1,序列非平稳,否则不能拒绝备泽假设,序列为平稳序列。
白噪声
纯随机过程,是由一个不相关的随机变量的序列构成的,即不存在自相关,协方差=0。对于一个随机过程来讲,如果期望和方差均为常数,则称该过程为白噪声过程。之所以成为白噪声过程是因为它和白光的过程有些相似,白光的光谱在各个频率上有相同的强度,在各个频率上面的值相同。所以白噪声序列一定是平稳的。
问题解答:
&白噪声和平稳性有什么区别?
这么说吧,白噪声一定是平稳序列,因为方差和均值都不随时间的变化而变化,且不存在自相关,平稳性呢是如果不平稳的话就进行差分,差分的时候是对xt=x(t-1)+u的序列方差和均值,但实际如果一介差分是平稳的话,我们实际用的数据是(xt-x(t-1))的差值这个序列,所以还要对这个序列进行白噪声检验,但也有人说白噪声的意义不大,还有我看一本书上面说,白噪声是检验数据有用的信息有没有被提取完毕,如果是白噪声,说明信息提取完毕,剩下的全是随机扰动,无法预测和使用;另一个版本的解释是,如果通不过白噪声检验就要对其进行自相关和偏自相关模型识别,即ARMA中的q.p,说明白噪声比平稳序列多一个不存在自相关,这个问题我也没找到官方的解答资料 (所以不知道理解的对不对,欢迎大家指正)
&时间序列本身是与时间相关的,为什么又要求均值和方差与t不相关呢?
可以这么理解,时间序列中的数据点的位置依赖于时间,即数据的取值依赖于时间的变化,但不一定是时间t的严格函数,而且数据点和t相关不代表方差与t相关,因为方差代表了数据在其均值上的离散程度
首先,我们看下上面这个回归模型,如果上面的模型合适,则u应该是平稳序列,则y对长期均衡关系的偏离是暂时的,即回归函数为长期均衡关系,相反,如果u为非平稳,则偏离会长时期不会消失,所以上面函数是否有价值,主要看u是否平稳
也许上面的几个解释变量都是非平稳序列,但是他们的线性组合也许是平稳的,这就是协整的理论思想
但是利用协整必须满足几个条件:(直接上图吧)
协整检验
利用残差平稳性检验,第一种是使用上面用到的ADF检验,但需要注意的是,协整检验的临界值不但与漂移项、趋势项有关,还与非平稳变量个数有关。我们一般用第二种DW检验,用协整回归得到的残差构造
实际上,多变量时间序列的协整就相当于是做回归,但是要看时序在回归上的可信度,对残差进行检验,判断变量间是否为长期的均衡关系,并且这个地方要注意,使用协整的条件,必须是几个变量为同阶差分。
最后说一个误差修正,因为长期关系的稳定关系一般都建立在短期动态的不断调整下得到并维持的,但由于变量的长期变量相互抵消,所以我们建立的模型看起来依然可信度高。那这个地方我们就要用误差修正模型来调节短期行为
误差修正过程 :
首先建立长期关系模型,并使其得到平稳的残差序列,即模型合理。然后建立短期动态关系,即误差修正方程,将长期关系中的各变量差分之后重新构造,并将长期模型中的残差序列作为解释变量引入,对短期动态关系检验,逐项剔除,直到找到适合的方法为止
理论案例:(直接上图)
时间序列模型的建立过程:
首先,画出散点图观察并进行检验,检验序列是否是平稳序列,不平稳进行差分或者log变换,平稳则进行白噪声检验,没有通过白噪声的情况下就要进行模型识别,AR、MA和ARMA,确定后对模型的随机扰动项u进行检验,是否为白噪声序列,如果不是,则返回到前面,对模型重新识别。
时间序列的平稳性是什么意思 时间序列的平稳性的定义
1、假定某个时间序列由某一随机过程(stochastic process)生成,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得到的。
2、如果经由该随机过程所生成的时间序列满足下列条件:均值E(Xt)=m是与时间t 无关的常数;方差Var(Xt)=s^2是与时间t 无关的常数;协方差Cov(Xt,Xt+k)=gk 是只与时期间隔k有关,与时间t 无关的常数;则称经由该随机过程而生成的时间序列是(弱)平稳的(stationary)。该随机过程便是一个平稳的随机过程(stationary stochastic process)。
时间序列-平稳性
1、平稳性:
1)平稳性就是要求经由样本时间序列所得到的拟合曲线在未来的一段时间内仍能顺着现有的形态“惯性”地延续下去。
2)平稳性要求序列的 均值和方差 不发生 明显 变化。
2、严平稳与弱平稳:
1)严平稳:严平稳表示的分布不随时间的改变而改变。如:白噪声(正态),无论怎么取都是期望为0,方差为1.
2)弱平稳:期望与相关系数(依赖性)不变
未来某时刻的t值Xt就要依赖于它的过去信息,所以需要依赖性。
2、差分法
1)时间序列在t与t-1时刻的差值
一阶平稳的序列有哪些
宽平稳序列等。其中一阶平稳时间序列的概念,分为两种宽平稳序列和严平稳序列,平稳过程对于时间序列是具有影响的,数学上,序列是被排成一列的对象(或事件);这样每个元素不是在其他元素之前,就是在其他元素之后。
时间序列的平稳性
并不是所有的时间序列都是可预测的,想象一下,假如一个时间序列的变化特性是不稳定的,那么它每个时期的波动对于之后一个时期的变化的影响都是无法预测的,因为它随时可能变脸。而当一个时间序列的变化特征维持稳定,数据的历史分布和未来分布就会趋于一致,这时我们就可以根据历史数据对未来作出预测。用来刻画数据变化特征稳定的量就是时间序列的平稳性。
如果图像没有明显的趋势,围绕着一个水平线稳定波动,序列传播没有明显的疏密变化,则可以判定为稳定序列。当然这种方法过于主观,还是需要更为严密的统计学检验。
观察图像的方式很直观,但也很主观,不适用于机器自动判断序列的稳定性。因此我们需要一个更有说服力、更加客观的统计方法来帮助我们检验时间序列的平稳性,这种方法,就是单位根检验。
当一个时间序列的滞后算子多项式方程 存在单位根时 ,我们认为该时间序列是 非平稳 的;反之,当该方程 不存在单位根 时,我们认为该时间序列是 平稳 的。其原理比较复杂,想要理解它需要较好的数学基础,这里我们只关注在Python中如何使用。
常见的单位根检验方法有 DF检验 、 ADF检验 和 PP检验 ,这里演示如何使用最常用的ADF检验。
(1)Python中的statsmodels库提供ADF检验函数,使用时需要引入
from statsmodels.tsa.stattools import adfuller as ADF
(2)具体函数如下:
statsmodels.tsa.stattools.adfuller(x, maxlag=None, regression='c', autolag='AIC', store=False, regresults=False)
(3)返回值解析:
(-5.2350403606036302, 7.4536580061930903e-06, 0, 60, {'1%': -3.5443688564814813, '5%': -2.9110731481481484, '10%': -2.5931902777777776}, 1935.4779504450603)

好了,今天关于“什么是平稳序列?”的话题就讲到这里了。希望大家能够通过我的介绍对“什么是平稳序列?”有更全面、深入的认识,并且能够在今后的实践中更好地运用所学知识。
