椭圆和双曲线的准线公式(双曲线的公式总结)
1、椭圆:(x^2/a^2)+(y^2/b^2)=1(a>b>0)准线方程为:x=±a^2/c2、双曲线双曲线:(x^2/a^2)-(y^2/b^2)=1准线方...
大家好,今天我将为大家详细介绍双曲线标准公式的问题。为了更好地呈现这个问题,我将相关资料进行了整理,现在就让我们一起来看看吧。

椭圆和双曲线的准线公式
1、椭圆:
(x^2/a^2)+(y^2/b^2)=1(a>b>0)
准线方程为:x=±a^2/c
2、双曲线
双曲线:(x^2/a^2)-(y^2/b^2)=1
准线方程为:x=±a^2/c?
圆锥曲线上任意一点到一焦点的距离与其对应的准线(同在Y轴一侧的焦点与准线)对应的距离比为离心率。椭圆上任意一点到焦点距离与该点到相应准线距离的比等于离心率e。
扩展资料
几何性质:
准线到顶点的距离为Rn/e,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。
当离心率e大于零时,则P为有限量,准线到焦点的距离为P = Rn(1+e)/e = L0/e 。
当离心率e等于零时,则P为无限大,P是非普适量。用无限远来定义圆锥曲线是不符合常理的。
教科书中定义局限性的原因是不了解准线的几何性质,当e等于零时则准线为无限远,准线是非普适量,是局限性的量。教科书中用准线来定义圆锥曲线不包含圆的原因。
百度百科-准线
双曲线的公式总结
双曲线的公式是焦点在x轴上时准线为x=a^2/c,x=-a^2/c;焦点在y轴上时,准线为y=a^2/c,y=-a^2/c。
在数学中,双曲线是定义为平面交截直角圆锥面的两半的一类圆锥曲线。它还可以定义为与两个固定的点(叫做焦点)的距离差是常数的点的轨迹。这个固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的半实轴。焦点位于贯穿轴上它们的中间点叫做中心。从代数上说,双曲线是在笛卡尔平面上由如下方程定义的曲线使得,这里的所有系数都是实数,并存在定义在双曲线上的点对(x,y)的多于一个的解。注意在笛卡尔坐标平面上两个互为倒数的变量的图像是双曲线。,双曲线的图像无限接近渐近线,但永不相交。
双曲线有哪些性质定理公式?
1、取值区域:
x≥a,x≤-a或者y≥a,y≤-a
2、对称性:
关于坐标轴和原点对称。
3、顶点:
A(-a,0) A’(a,0) AA’叫做双曲线的实轴,长2a;B(0,-b) B’(0,b) BB’叫做双曲线的虚轴,长2b。
4、渐近线: ?
横轴:y=±(b/a)x ?竖轴:y=±(a/b)x
5、离心率:
e=c/a 取值范围:(1,+∞)
6、双曲线上的一点到定点的距离和到定直线(相应准线)的距离的比等于双曲线的离心率。
7、双曲线焦半径公式:
圆锥曲线上任意一点到焦点距离。过右焦点的半径r=|ex-a|;过左焦点的半径r=|ex+a|?
8、等轴双曲线?
双曲线的实轴与虚轴长相等,2a=2b e=√2
9、共轭双曲线?
(x^2/a^2)-(y^2/b^2)=1 与 (y^2/b^2)-(x^2/a^2)=1 叫共轭双曲线?
(1)共渐近线?
(2)e1+e2>=2√2?
10、准线:?
x=±a^2/c,或者y=±a^2/c
11、通径(定义:圆锥曲线(除圆外)中,过焦点并垂直于轴的弦):
2b^2/a
12、焦点弦长公式:
2pe/(1-e^2cos^2θ) [p为焦点到准线距离,θ为弦与X轴夹角] 或2p/sin^2θ
13、d = √(1+k^2)|x1-x2| = √(1+k^2)(x1-x2)^2 = √(1+1/k^2)|y1-y2| = √(1+1/k^2)(y1-y2)^2 推导如下:?
由直线的斜率公式:k = (y1 - y2) / (x1 - x2) ?得 y1 - y2 = k(x1 - x2) 或 x1 - x2 = (y1 - y2)/k?
分别代入两点间的距离公式:|AB| = √[(x1 - x2)? + (y1 - y2)? ]?
稍加整理即得: ?|AB| = |x1 - x2|√(1 + k?) 或 |AB| = |y1 - y2|√(1 + 1/k?)
扩展资料:
一、光学性质:
从双曲线一个焦点发出的光,经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点上。双曲线这种反向虚聚焦性质,在天文望远镜的设计等方面,也能找到实际应用。
二、相关定义:
定义1:
平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点。
定义2:
平面内,到给定一点及一直线的距离之比为常数e((e>1),即为双曲线的离心率)的点的轨迹称为双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线。双曲线准线的方程为(焦点在x轴上)或(焦点在y轴上)。
定义3:
一平面截一圆锥面,当截面与圆锥面的母线不平行也不通过圆锥面顶点,且与圆锥面的两个圆锥都相交时,交线称为双曲线。
定义4:
在平面直角坐标系中,二元二次方程F(x,y)=ax2+bxy+cy2+dx+ey+f=0满足以下条件时,其图像为双曲线。
参考资料:
百度百科-双曲线

好了,今天关于“双曲线标准公式”的话题就到这里了。希望大家能够通过我的讲解对“双曲线标准公式”有更全面、深入的了解,并且能够在今后的生活中更好地运用所学知识。
